A PDE approach to jump - diffusions ∗
نویسندگان
چکیده
In this paper, we show that the calibration to an implied volatility surface and the pricing of contingent claims can be as simple in a jump-diffusion framework as in a diffusion one. Indeed, after defining the jump densities as those of diffusions sampled at independent and exponentially distributed random times, we show that the forward and backward Kolmogorov equations can be transformed into partial differential equations. It enables us to (i) derive Dupire-like equations (see Dupire (1994)) for coefficients characterizing these jump-diffusions; (ii) describe sufficient conditions for the processes they induce to be calibrated martingales; and (iii) price path-independent claims using backward partial differential equations. This paper also contains an example of calibration to the S&P 500 market. JEL classification: C02, C60, G12. AMS classification codes: 60G44, 60J25, 60J50, 91B28, 91B70.
منابع مشابه
Stochastic Processes and Control for Jump-Diffusions∗
An applied compact introductory survey of Markov stochastic processes and control in continuous time is presented. The presentation is in tutorial stages, beginning with deterministic dynamical systems for contrast and continuing on to perturbing the deterministic model with diffusions using Wiener processes. Then jump perturbations are added using simple Poisson processes constructing the theo...
متن کاملStability of numerical methods for jump diffusions and Markovian switching jump diffusions
This work is devoted to stability analysis of numerical solutions for jump diffusions and jump diffusions with Markovian switching. Different from the existing treatment of Euler-Maurayama methods for solutions of stochastic differential equations, we use techniques from stochastic approximation. We analyze the almost sure exponential stability and exponential pstability. Then Markovian regime-...
متن کاملEstimation of Continuous Time Processes Via the Empirical Characteristic Function
This paper examines a particular class of continuous-time stochastic processes commonly known as af¿ne diffusions (AD) and af¿ne jump-diffusions (AJD) in which the drift, the diffusion and the jump coef¿cients are all af¿ne functions of the state variables. By deriving the joint characteristic function associated with a vector of observed state variables for such models, we are able to examine ...
متن کاملNumerical solutions for jump-diffusions with regime switching
This paper is devoted to numerical solutions for a class of jump-diffusions with regime switching. After briefly reviewing the notion of jump-diffusions with regime switching, finite-difference procedures are constructed. Under simple conditions, it is proved that the algorithm converges to the desired limit by means of a martingale problem formulation. Numerical experiments are carried out to ...
متن کاملConvergence Rates of Markov Chain Approximation Methods for Controlled Regime-Switching Diffusions with Stopping
This work summarizes our recent work on rates of convergence of Markov chain approximation methods for controlled switching diffusions, in which both continuous dynamics and discrete events coexist. The discrete events are formulated by continuous-time Markov chains to delineate random environment and other random factors that cannot be represented by diffusion processes. The cost function is o...
متن کامل